

European Journal of Pharmacology 385 (1999) 291-294

www.elsevier.nl/locate/ejphar

Short communication

[³H]β-CIT: a radioligand for dopamine transporters in rat brain tissue

Nora S. Kula ^{a,b}, Ross J. Baldessarini ^{a,b,*}, Frank I. Tarazi ^{a,b}, Raoul Fisser ^{a,b}, Shaoyin Wang ^c, Joseph Trometer ^d, John L. Neumeyer ^{a,b}

^a Mailman and Addiction Research Centers, McLean Division of Massachusetts General Hospital, Belmont, MA 02478, USA
^b Consolidated Department of Psychiatry and Neuroscience Program, Harvard Medical School, Boston, MA, USA
^c Research Biochemicals International (RBI), Natick, MA, USA
^d New England Nuclear (NEN), Boston, MA, USA

Received 27 July 1999; received in revised form 27 September 1999; accepted 1 October 1999

Abstract

[3 H]2-β-carbomethoxy-3-β-[4 -iodophenyl]tropane (β-CIT) was prepared and evaluated. With rat forebrain tissue, [3 H]β-CIT showed high affinity for dopamine transporters (DAT), with selectivity for DAT over norepinephrine transporters, but not serotonin transporters, as well as DAT-stereoselectivity with β-CIT, amphetamine and methylphenidate. Affinity and selectivity for 53 compounds assayed with [3 H]β-CIT and standard DAT radioligand [3 H]GBR-12935 were highly correlated (7 > 0.95). [3 H]β-CIT is proposed as a useful, high-affinity DAT radioprobe. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Autoradiography; [3H]β-CIT; Dopamine; Monoamine; Transporter; Tropane

1. Introduction

Radioligands with high affinity or selectivity for dopamine transporters (DAT) include tritiated mazindol (Javitch et al., 1984), GBR-12935 (Andersen, 1987), phencyclidine analog N-(1-[1-benzo[b]thien-2-ylcyclohexyl])piperidine (BTCP) (Vignon et al., 1988) and phenyltropane congeners, including radioligands suitable for clinical neuroimaging (Milius et al., 1991; Chally et al., 1996; Neumeyer et al., 1994; La Garza et al., 1999). Phenyltropanes include [3H]CFT (Madras et al., 1989) and $[^{125}I]R$ -2 β -carbomethoxy-3 β -(4-iodophenyl)tropane (β -CIT, RTI-55) (Boja et al., 1991; Innis et al., 1991). Since [³H]\(\beta\)-CIT is not available, we prepared and characterized it, finding close pharmacological similarity to the standard DAT radioligand [³H]GBR-12935, and a very high signalto-noise ratio in radiotransporter binding and autoradiographic experiments.

E-mail address: rjb@mclean.org (R.J. Baldessarini)

2. Materials and methods

2.1. Materials

Ten phenyltropanes were prepared (Neumeyer et al., 1994) at Research Biochemicals International (RBI, Natick MA): β-CIT, its precursor (nor-β-CIT), enantiomer (1S)β-CIT, 3,4-diiodophenyl (CIIT), 4-fluorophenyl-(CFT) and 4-chlorophenyl congeners (CCIT), as well as N-2-fluoroethyl-CIT (FE-CIT), N-3-fluropropyl-CIT (FP-CIT), 2β-carboisopropoxy-CIT (CIT-IP), and N-3-fluoropropyl- 2β -carboisopropoxy (FP-CIT-IP) derivatives. [N- 3 Hmethyl]β-CIT (87 Ci/mmol) was prepared from *nor*-β-CIT at New England Nuclear (NEN; Boston, MA). Other NEN radioligands included [propylene-2,3-3H]GBR-12935 (13 Ci/mmol, $K_d = 1.0$ nM), [phenyl-6'-3H](-)-paroxetine (20 Ci/mmol, $K_d = 150$ pM), and [N-methyl-³H](±)nisoxetine (85 Ci/mmol; $K_d = 800$ pM). Test agents were from RBI or Sigma (St. Louis, MO) or donated by: Celgene (Warren, NJ; methylphenidate-HCl isomers), Ferrosan (Copenhagen; [-]-paroxetine-HCl), Hoechst-Roussel (Sommerville, NJ; nomifensine-maleate), Eli Lilly (Indianapolis, IN; (±)-fluoxetine–HCl), Lundbeck

^{*} Corresponding author. Mailman Research Center, McLean Hospital 115 Mill Street, Belmont, MA 02478, USA. Tel.: +1-617-855-3203; fax: +1-617-855-3479.

(Copenhagen; $[\pm]$ -citalopram-HBr), Novartis (Basle, Switzerland; mazindol), Pfizer (Groton, CT; [+]-sertraline-HCl), and Philips-Duphar (Amsterdam; fluvoxamine-maleate).

2.2. Cerebral tissue

Brain tissue from young adult (250 g), male Sprague—Dawley rats (Charles River Labs, Wilmington, MA; following federal guidelines and Institutional approval) included homogenates (in ice-cold, 50 mM Tris-HCl buffer, pH 7.4 with 150 mM NaCl) of caudate-putamen (CPu) or frontoparietal cerebral cortex, and cryostatic coronal sections (10 µm) through mid-striatum.

2.3. Radiotransporter assays

[3H]\(\beta\)-CIT was incubated with striatal homogenates in assay buffer (50 mM Tris-citrate, pH 7.4 with 120 mM NaCl and 4 mM MgCl₂) at concentrations (C) of 25–4500 pM (optimized for routine assays at C = 300 pM, 60 min, 20°C), and compared with [3 H]GBR-12935 (C = 400 pM, 45 min, 4°C), with 1 μM GBR-12909 to define nonspecific binding (Kula and Baldessarini, 1990). [³H](-)-Paroxetine (C = 200 pM, 60 min, 20°C; blank 2 μ M fluoxetine) labeled 5-HT transporters (5-HTT) (Habert et al., 1985), and [3 H]nisoxetine (C = 270 pM, 180 min, 4 ${}^{\circ}$ C; blank 2 µM desipramine) labeled norepinephrine transporters (NET) (Tejani-Butt, 1992) in cortical homogenates in 50 mM Tris-HCl (pH 7.4) with 5 mM KCl and 120 mM NaCl (300 mM for NET). Assays were terminated on ice, filtered (glass-fiber filters saturated with 0.3% [vols] polyethyleneimine), washed with excess ice-cold 150 mM saline, and counted in Polyfluor (Packard Instruments; Meriden, CT) in a LS spectrophotometer (Wallac-LKB; Gaithersburg, MD; 50% efficiency).

[³H]β-CIT K_d was determined by Scatchard and kinetic analyses (1 μM GBR-12909 used for $k_{\rm off}$, with $K_d = k_{\rm off}/k_{\rm on}$) (Kula and Baldessarini, 1990; Baldessarini et al., 1992). Concentration-inhibition functions were based on ≥ 2 independent analyses involving ≥ 6 concentrations (in triplicate) of each test agent, following screening at 1, 3 and 10 μM. Hill slopes and IC₅₀ ± S.E., converted to K_i (nM) ($K_i = IC_{50}/[1 + (C/K_d)]$) were determined by computer-function-fitting (Baldessarini et al., 1992). K_i for 53 test agents with both DAT radioligands, and K_i selectivity-ratios (for 5-HT/DA and NE/DA radiotransporter assays) were compared by linear regression of their negative logarithms (p K_i or p[K_i -ratio]).

2.4. Autoradiography

Cryostatic coronal sections (10 μ m) through mid-striatum were preincubated (60 min, 20°C) in DAT assay buffer, then 60 min in fresh buffer with 2 nM [3 H] β -CIT or 2 nM [3 H]GBR-12935 (with 1 μ M *cis*-flupenthixol, to prevent labeling of piperazine sites), with nonspecific bind-

ing defined with 1 μ M GBR-12909 with/without 1 μ M citalopram. Slides were washed twice (5 min in ice-cold fresh buffer), dipped in ice-cold water, dried, exposed to tritium-sensitive film for 10 days with [3 H]standards, photodeveloped, and analyzed by computed densitometry, all detailed elsewhere (Tarazi et al., 1998).

3. Results

3.1. Binding of $[^3H]\beta$ -CIT with rat striatal homogenates

Striatal binding of $[^3H]\beta$ -CIT was linear vs. time (1–30 min, saturating by 45 min at 20°C), and linearly dependent on tissue-protein (to ± 5 -times standard assay conditions equivalent to 1.5 mg fresh striatum). Unlabeled β -CIT inhibited $[^3H]\beta$ -CIT binding with striatal homogenates monophasically (slope function, 0.99). K_d of $[^3H]\beta$ -CIT by Scatchard and kinetic analyses averaged 230 pM. At standard assay C = 300 pM $[^3H]\beta$ -CIT, specific binding defined with 1 μ M GBR-12909 averaged 92%.

3.2. Pharmacology of binding of $[^3H]\beta$ -CIT compared with $[^3H]GBR$ -12935

Potency (K_i , nM) of 53 compounds competing vs. [3 H] β -CIT for binding to presumptive DAT sites in striatal membranes, was compared with K_i vs. [3 H]GBR-12935 (Table 1). Hill slope functions with compounds with $K_i < 1$ μ M averaged: 0.998 \pm 0.036 with [3 H] β -CIT and 0.857 \pm 0.025 with [3 H]GBR-12935.

Expected isomeric preference was found with *R*-over-*S*- β -CIT, (+)-over-(-)-amphetamine, and (+)-over-(-) methylphenidate with both radioligands. Phenyltropane affinities were similar with both radioligands, but CFT was 57-times less potent than β -CIT vs. [3 H] β -CIT, and preferred [3 H] β BR-12935 over [3 H] β -CIT by 5-fold. Similar K_{i} -rank-order was shown with both DAT radioligands by DAT active agents, with lower affinity for other comparison agents (Table 1).

Some agents selective for 5-HTT or NET (Table 1) had expected weak interactions with both DAT radioprobes (K_i all $\geq 1~\mu\text{M}$ with fluoxetine, desipramine, fluvoxamine, citalopram), but several antidepressants usually considered selective for 5-HTT or NET had some DAT affinity with both radioligands (sertraline, paroxetine, nisoxetine: $K_i = 14-506~\text{nM}$). Mazindol was NET-selective (51–114-times), but showed considerable DAT- as well as 5-HTT affinity (K_i 16–38 nM), and nomifensine favored NET-over-DAT by 16–25-fold.

Overall correlation of p K_i values for compounds tested with both DAT probes (Table 1) was very high (r=0.988, slope = 0.992, p<0.0001). Moreover, selectivity (p K_i -ratios) for 5-HT/DA and NE/DA transporters was similar with both DAT radioligands (r=0.993, slope = 0.942 for DAT-over-5-HTT, and r=0.992, slope = 0.971 for DAT-over-NET; both p<0.0001).

Table 1 Affinity (K_i , nM \pm S.E.) at monoamine transporters in rat brain tissue. The following compounds showed < 10% receptor binding activity at > 10,000 nM with both DA_T radioligands: atropine, benzoylnorecognine, m-benzoylecognine, p-benzoylnorecognine, bretylium, (-)-epinephrine, guanethidine, (-)-norepinephrine, octopamine, propylamine, serotonin, m-tyramine, p-tyramine

Test Compound	Dopamine		Serotonin	Norepinephrine
	$[^3H]\beta$ -CIT	[³ H]GBR-12935	[³ H]Paroxetine	[³ H]Nisoxetine
Tropanes				
nor-β-CIT	0.64 ± 0.097	0.42 ± 0.06	0.062 ± 0.001	1.85 ± 0.21
CIIT	1.26 ± 0.04	0.96 ± 0.08	0.38 ± 0.03	50.8 ± 3.0
3-CIT	1.33 ± 0.15	0.96 ± 0.15	0.46 ± 0.06	2.80 ± 0.40
CIT-IP	1.85 ± 0.25	3.28 ± 0.22	20.8 ± 1.5	592 ± 50
CCIT	2.36 ± 0.17	1.75 + 0.07	6.40 + 0.32	17.5 ± 4.6
FE-CIT	7.19 ± 0.74	3.67 ± 0.43	0.86 ± 0.06	93.0 ± 17
FP-CIT	8.29 ± 0.53	3.53 ± 0.34	1.68 ± 0.13	63.0 ± 4.0
FP-CIT-IP	-15.6 ± 1.7	8.83 ± 1.45	48.7 ± 8.4	$\geq 10,000$
CFT	76.0 ± 2.3	14.7 ± 2.9	181 ± 21	635 ± 110
o-OH–Cocaine	230 ± 13	170 ± 50	3600 ± 400	773 ± 68
Cocaine	400 ± 50	350 ± 67	1500 ± 200	1500 ± 250
n-OH–Cocaine	720 ± 200	470 + 75	1500 ± 200 1500 ± 200	7000 ± 200
1S)-β-CIT	> 10,000	> 10.000	558 ± 66	> 10,000
10, p C11	> 10,000	> 10,000	330 <u>+</u> 00	> 10,000
Dopamine transport blockers	1			
GBR-12909	0.15 ± 0.05	0.06 ± 0.02	52.8 ± 4.4	> 10,000
GBR-12935	1.59 ± 0.02	0.46 ± 0.05	1000 ± 150	1500 ± 250
ndatraline	1.77 ± 0.12	0.90 ± 0.09	0.12 ± 0.02	1.17 ± 0.16
ВТСР	3.90 ± 0.70	5.60 ± 0.57	66.1 ± 4.7	53.2 ± 7.7
GBR-13069	4.00 ± 0.10	1.07 ± 0.15	160 ± 22	2000 ± 300
Amfonelic acid	-18.7 ± 1.3	5.64 ± 0.9	> 10,000	> 10,000
+)-Methylphenidate	125 ± 10	54.3 ± 6.2	> 10,000	126 ± 7.0
±)-Methylphenidate	211 ± 23	82.9 ± 15.7	> 10,000	242 ± 15
-)-Methylphenidate	1500 ± 200	451 ± 118	> 10,000	3000 ± 400
Benztropine	242 ± 22.0	52.6 ± 38.3	383 ± 24	1000 ± 200
GYKI-52895	378 ± 42	281 ± 35	> 10,000	> 10,000
Supropion Supropion	840 ± 72	168 ± 21	> 10,000	≥ 10,000 ≥ 10,000
+)-Amphetamine	1000 ± 150	1000 ± 21 1000 ± 150	> 10,000	1000 ± 150
—)-Amphetamine	> 10,000	> 10,000	> 10,000	> 10,000
—)-Amphetamme	> 10,000	> 10,000	> 10,000	> 10,000
Serotonin or norepinephrine	transporter ligands			
Sertraline	20.0 ± 2.9	13.8 ± 3.9	0.16 ± 0.01	> 10,000
Mazindol	37.6 ± 91.4	16.9 ± 9.7	36.1 ± 9.7	0.33 ± 0.08
Nomifensine	76.5 ± 6.7	48.9 ± 22	2600 ± 350	3.11 ± 0.38
Paroxetine	355 ± 52	506 ± 66	0.90 ± 0.30	324 ± 47.0
Visoxetine	505 ± 50	286 ± 25	158 ± 29	0.460 ± 0.20
luoxetine	1700 ± 250	1100 ± 200	3.55 ± 0.29	6000 ± 800
Desipramine	> 10,000	7000	228 ± 20	0.061 ± 0.041
luvoxamine	> 10,000	> 10,000	2.77 ± 0.17	5000 ± 600
Citalopram	> 10,000	> 10,000	0.820 ± 0.030	> 10,000
Missellaneous common 1-				
Miscellaneous compounds	3000 ± 400	967 ± 126	153 1 10	1500 ± 250
Chlorpheniramine		867 ± 126	45.3 ± 4.8	1500 ± 250
Dopamine	> 10,000	2500 ± 300	> 10,000	> 10,000
R(-)-Apomorphine	> 10,000	5000 ± 600	> 10,000	> 10,000
Franylcypromine	> 10,000	$\geq 10,000$	> 10,000	3000 ± 400

3.3. Autoradiography

[3 H]β-CIT autoradiography yielded well-defined signals-over-background. Labeling was highly selective for CPu and nucleus accumbens septi (NAc), with \geq 11% as much specific radiographic density in other regions, including frontal cortex. Nonspecific binding (with 1 μ M GBR-12909) accounted for only 8.0%, and 11.1% of total

[3 H]β-CIT binding in CPu and NAc, where specific DAT binding (\pm S.E.M., N = 5) ranked: 249 \pm 12.6 and 154 \pm 3.5 fmol/mg tissue, respectively. The weak remaining signal with [3 H]β-CIT + GBR-12909 in striatum fell virtually to background with 1 μ M citalopram included.

In contrast to [³H]β-CIT, alternate rat brain sections evaluated under matched conditions with [³H]GBR-12935 (with *cis*-flupenthixol to mask piperazine binding sites)

yielded lower proportions of specific to total radioligand binding (70.0% in CPu, 59.1% in NAc), and 1 μ M citalopram reduced background only slightly, consistent with the low affinity of GBR-12935 vs. 5-HTT ligand [3 H]paroxetine with cerebral cortical homogenates (K_{i} = 1180 nM; Table 1).

4. Discussion

Other than $[^3H]\beta$ -CIT, the only other commercially available tritiated-phenyltropane for labeling DAT is $[^3H]$ CFT, studied with primate brain tissue (Madras et al., 1989). Unlabeled β -CIT showed 57- and 15-fold higher affinity than CFT vs. $[^3H]\beta$ -CIT and $[^3H]GBR$ -12935 (Table 1). $[^3H]\beta$ -CIT was selective for DAT sites in autoradiographs of corpus striatum: 90% of total binding was displaced by the dissimilar but very potent DAT ligand, GBR-12909 (Table 1). The little $[^3H]\beta$ -CIT bound in extrastriatal areas was virtually completely displaced by the potent, very highly 5-HTT-selective agent citalopram. These findings suggest only minor cross-reaction of $[^3H]\beta$ -CIT to 5-HTT in striatum. Nevertheless, $[^{125}I]\beta$ -CIT (RTI-55) can label 5-HTT in serotonin-rich sites, including raphe nuclei (Fujita et al., 1991).

There was very close pharmacological similarity of $[^3H]\beta$ -CIT and standard DAT-radioligand $[^3H]GBR$ -12935, with expected stereoselectivity for several enantiomeric-pairs and similar potency-rankings for 53 test-agents with or without DAT-selectivity. With both radioligands, there were also high correlations of pK_i values and of selectivity (pK_i -ratios) for DAT over both 5-HTT and NET. Binding of $[^3H]\beta$ -CIT was monophasic, though the radioiodinated- β -CIT ($[^{125}I]RTI$ -55) detected two binding sites (Boja et al., 1991).

The present results support the utility of [³H]β-CIT as a radioligand for the DAT, with high DAT-affinity, very high proportion of specific binding in rat striatum, and close pharmacological similarity to standard DAT radioligand [³H]GBR-12935. [³H]β-CIT should be useful for radiotransporter assays and autoradiographic analysis of DAT-rich tissues.

Acknowledgements

Supported by grants from NIH MH-19905, MH-34006, MH-47370, MH-49533, Bruce J. Anderson Foundation, funds of the McLean Private Donors Neuropharmacology Research Fund; and Saal van Zwanenbergstichtung. Drug substances were generously donated by manufacturers listed above.

References

- Andersen, P.H., 1987. Biochemical and pharmacological characterization of [³H]GBR-12935 binding in vitro to rat striatal membranes: labeling of the dopamine uptake complex. J. Neurochem. 48, 1887–1896.
- Baldessarini, R.J., Kula, N.S., Campbell, A., Bakthavachalam, V., Yuan, J., Neumeyer, J.L., 1992. Prolonged D₂ antidopaminergic activity of alkylating and nonalkylating derivatives of spiperone in rat brain. Mol. Pharmacol. 42, 856–863.
- Boja, J.W., Patel, A., Carroll, F.I., Rahman, M.A., Philip, A., Lewin, A.H., Kopajtic, T.A., Kuhar, M.J., 1991. [1251]RTI-55, a potent ligand for dopamine transporters. Eur. J. Pharmacol. 194, 133–134.
- Chally, T., Dhawan, V., Kuzumata, K., Antonini, A., Margouleff, C., Elakhlef, A., Margouleff, D., Yee, A., Wang, S., Tamagnan, G., Neumeyer, J.L., Eidelberg, D., 1996. Radio-synthesis of [18 F]N-3-fluoropropyl-2-β-carbomethoxy-3-β-(4-iodophenyl)nortropane and the first human study with positron emission tomography. J. Nucl. Med. Biol. 23, 999–1004.
- Fujita, J., Shimada, S., Fukuchi, K., Tohyama, M., Nishimura, T., 1991.
 Distribution of cocaine recognition sites in rat brain: in vitro and ex vivo autoradiography with [¹²⁵I]RTI-55. Chem. Neuroanat. 7, 13–23.
- Habert, E., Graham, D., Tahraoui, L., Claustre, Y., Langer, S.Z., 1985. Characterization of [³H]paroxetine binding to rat cortical membranes. Eur. J. Pharmacol. 118, 107–114.
- Innis, R.B., Baldwin, R., Sybirska, E., Zea, Y., Laruelle, M., Al-Tikriti, M., Charney, D., Zoghbi, S., Smith, E., Wisniewski, G., Hoffer, P., Wang, S., Milius, R.A., Neumeyer, J.L., 1991. Single photo emission computed tomography imaging of monoamine reuptake sites in primate brain with [123 I]β-CIT. Eur. J. Pharmacol. 200, 369–370.
- Javitch, J.A., Blaustein, R.O., Snyder, S.H., 1984. [³H]Mazindol binding associated with neuronal dopamine and norepinephrine uptake sites. Mol. Pharmacol. 26, 35–44.
- Kula, N.S., Baldessarini, R.J., 1990. Lack of increase in dopamine transporter binding or function in rat brain tissue after treatment with blockers of neuronal uptake of dopamine. Neuropharmacology 30, 89–92.
- La Garza, R. II, Meltzer, P.C., Madras, B.K., 1999. Non-amine dopamine transporter probe [³H]tropoxene distributes to dopamine-rich regions of monkey brain. Synapse 34, 20–27.
- Madras, B.K., Spealman, R.D., Fahey, M.A., Neumeyer, J.L., Saha, J.K., Milius, R.A., 1989. Cocaine receptors labeled by [³H]2β-carbomethoxy-3β(4-fluorophenyl)tropane. Mol. Pharmacol. 36, 518–524.
- Milius, R.A., Saha, J.K., Madras, B.K., Neumeyer, J.L., 1991. Synthesis and receptor binding of N-substituted tropane derivatives, high-affinity ligands for the cocaine receptor. J. Med. Chem. 34, 1728–1731.
- Neumeyer, J.L., Wang, S., Gao, Y., Milius, R.A., Kula, N.S., Baldessarini, R.J., 1994. *N*-ω-fluoroalkyl analogs of [1R]-2β-carbomethoxy-3β-[4-iodophenyl]tropane (β-CIT): Radiotracers for positron emission tomography and single photon emission computed tomography imaging of dopamine transporters. J. Med. Chem. 37, 1558–1561.
- Tarazi, F.I., Campbell, A., Yeghiayan, S.K., Baldessarini, R.J., 1998. Localization of dopamine receptor subtypes in caudate-putamen and nucleus accumbens septi of rat brain: comparison of D₁-, D₂-, and D₄-like receptors. Neuroscience 83, 169–176.
- Tejani-Butt, S.M., 1992. [³H]Nisoxetine: a radioligand for quantification of norepinephrine uptake sites by autoradiography or by homogenate binding. J. Pharmacol. Exp. Ther. 260, 427–436.
- Vignon, J., Pinet, V., Cerruti, C., Kamenka, J.-M., Chicheportiche, R., 1988. [³H]N-(1-[2-benzo(b)-thiophenyl]cyclohexyl)-piperidine ([³H]BTCP): new phencyclidine analog selective for the dopamine uptake complex. Eur. J. Pharmacol. 148, 427–436.